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The accuracy of the random vortex method, in approximating the solution of the Navier- 
Stokes equation, is investigated using the model problem of a circular vortex as suggested by 
Milinazzo and Saffman [13]. The method consists of partitioning the vorticity into “vortex 
blobs.” These blobs are moved via two actions. First, a blob is deterministically moved under 
the action of the velocity field associated with the other blobs. Then to simulate viscosity a 
random component is added to the position of the blob. For this model problem the nonlinear 
terms of the Navier-Stokes equation vanish. Thus the major error inherent in the deter- 
ministic component of the method vanishes. Consequently, for this model problem concen- 
tration is on the interaction of the deterministic and random components of the method. 
Results show that the accuracy of the method depends heavily on the initial distribution and 
strength of the computational elements, i.e., the vortex blobs. With the right choice of initial 
conditions it is found that e,(t)= IL(t)-A(t)l/A(t) is O(R-“2N-“Z), where L(t) and A(t) 
are, respectively, the exact and computed angular moment of vorticity distribution at time t 
for N vortex blobs at a Reynolds number R. 0 1985 Academic PICSS, IIIC. 

1. INTRODUCTION 

The vorticity stream formulation of the incompressible Navier-Stokes equation 
in the plane has the form, 

1 
w,+uo,+uWy=RAW, W(Z, 0) = <(Z) (1.1) 

AI)=w (1.2) 

u= -l/Q, (1.3) 

0 = L (1.4) 

where U = (u, V) is the velocity, o the vorticity, $ the stream function, R is the 
Reynolds number, and 5 = (x, y) are the spatial coordinates. 
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To solve these equations numerically it is common to solve a discrete 
approximation of these equations on a grid. These approximations introduce an 
artitical viscosity term. The random vortex method (Chorin [S]) is designed to 
overcome this difficulty. The method involves partitioning the vorticity into a sum 
of “blobs.” It is a fractional step method. At each time step, the convective part of 
the Navier-Stokes equation is solved by moving each of the blobs under the action 
of the velocity field associated with the other blobs (vortex method). The diffusion 
part is simulated by letting the particles undertake a random walk (Lamperti [ 10, 
Chap. 41). It should be noted that large statistical errors can occur in the solution 
of vorticity by using this method. On the other hand, as velocity is an integral of 
vorticity, the statistical error for the velocity is much smaller. Chorin’s method also 
allows for domains with boundaries. We shall use this method in the case in which 
the domain is the whole plane. Thus it is not necessary to discuss the boundary 
conditions. 

Chorin’s method has, on the whole (see Leonard [ 1 1 ] ), been received as a useful 
and important tool in the study of high Reynolds number, incompressible flows. 
However, Milinazzo and Saffman [13] came to the conclusion that the method 
could produce significant errors, even when a large number of vortex blobs were 
used. They obtained 10% error with 1000 blobs for a Reynolds number of 5000. 
Chorin [6] has pointed out that their conclusions were based on their choice of 
error measurement. He also criticizes their implementation of the random vortex 
method, in particular their choice of cutoff parameter (see Sect. 2). 

It is our intent to reproduce Milinazzo and Saffman’s results, in order to clarify 
their results and their disagreement with Chorin. In Section 3, we present Milinazzo 
and Saffman’s model problem. We analyze two methods of measuring the error for 
the method, the one proposed by Chorin in [6], and the one used by Milinazzo 
and Saffman in their paper. Estimates are derived for the errors expected in the 
numerical results. These estimates are based on the calculations of Milinazzo and 
Saffman [13], Section 4, and agree with Chorin’s [S] estimates. 

In Section 4 we compare the method used by Chorin and others to approximate 
the initial vorticity and the construction of Milinazzo and Saffman. In the first 
method the vortex blobs are initially placed on a uniform grid. In the second 
method the blobs are placed by use of a random distribution. We find that the first 
method produces more accurate results. For instance, using 500 blobs and a 
Reynolds number of 5000, we obtain a 5 % error using the first method and a 12 % 
error using the second method. These errors are calculated using Milinazzo and 
Saffman’s method of error measurement. This result verifies Milinazzo and 
Saffman’s result of a 10% error for 1000 blobs, since an increase in the number of 
blobs by a factor of 2 should decrease the error by a factor of ,,/?. Note that if we 
use Chorin’s error measurement for the two cases above, we obtain errors of 0.3 % 
and 0.7 %, respectively. 

We find that our results are insensitive to both the type of cutoff function used 
and the size of cutoff employed. In particular, we tested the cutoffs used by Beale 
and Majda [4], Chorin [S], Hald [7], and Milinazzo and Saffman [13] (see 
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Table I). Since the average distribution of particles for our problem is radially sym- 
metric it is reasonable to assume that the angular motion of the vortex particles is 
governed by the vortex method, whereas the radial motion is governed by the ran- 
dom walk algorithm. As our methods of error measurement are only sensitive to 
the average change in the radial position of the particles, it is not surprising that we 
cannot detect any difference between the various cutoff functions. 

Our numerical runs show that there are two types of errors in the computations. 
We refer to these as the startup error and the interaction error. The startup error 
depends on the difference between the initial distribution of vortex blobs and the 
exact vorticity. The interaction error involves the errors produced through the 
interaction of the vortex method and the random walk algorithms at each time step. 
Our computations show that Milinazzo and Saffman’s implementation gives 2 to 5 
times larger startup errors than the standard method in which the vortex blobs are 
initially placed on a uniform grid. For a Reynolds number greater than 1000 the 
startup error “swamps” the interaction error, i.e., the computed error is due to 
Milinazzo and Saffman’s choice of initial conditions. However, for larger Reynolds 
numbers (R b 20000) even the standard method produces significant startup errors 
in comparison to the interaction error. 

TABLE I 

Common Cutoff Functions 

Chorin [5] 

h(r) = 1 if r>6, 
= r/6 if r<6 

Milinavo and Saffman [13] 

.fdr) = 1 if r>6, 
= r2/S2 if r<S 

Hald [7] 

fb(rl=g 14-105$+196&*40$+36$ 
[ 1 if r <6, 1 if r zS 

.fs(r)=$ 56-630~+15~~~-1680~+8~~-175~ 
[ 1 if r-c& 1 if r>6 

Beale and Majda [4] 

581/58/1-3 
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By measuring the error in a different way we can study the interaction term. We 
observe that the errors for the random vortex method and the solution of the dif- 
fusion equation using the random walk method are comparable, at least if the num- 
ber of vortices are less than 500. Both methods produce errors of O(N-“2R ~ li2), 
where N is the number of blobs. This verifies our analysis in Section 3. The error 
for the random vortex though, is typically larger than that of the random walk 
algorithm. 

2. THE RANDOM VORTEX METHOD 

The random vortex method solves the Navier-Stokes equation (1.1 )-( 1.4) by a 
fractional step method, which consists of the two equations, 

m,=Qw 4% 0) = 51(3 (2.1) 

Qw = - (uoz + uo,.), 

where 

and 

A$=o, u= -*,>, v=*, 

1 
cot=-Ado, 

R 
o(Z, 0) = t2(z). (2.2) 

At each time step, Eq. (2.1) is solved by following the evolution of a finite num- 
ber of fluid elements (vortex blobs). The solution of Eq. (2.2) is then simulated by 
adding a gaussianly distributed random component, of appropriate variance, to the 
position of these fluid elements (blobs). An approximation to the Navier-Stokes 
equation is then obtained from the resulting vorticity distribution. 

We will discuss the solution of Eq. (2.1) by the vortex method (Chorin [S]). The 
basic idea is to approximate the vorticity by a sum of “vortex blobs.” A blob can be 
thought of as a region of vorticity which is convected in the fluid under the action 
of the other blobs. In a real fluid, the distribution of vorticity inside a blob would 
be distorted by the flow. In the vortex method it is assumed that the blobs are tran- 
slated as a whole. The validity of this is proved in Hald [7] and Beale and Madja 
[4]. The problem is then reduced to following the evolution of a finite number of 
these blobs. 

First it is necessary to choose a set of “cutoff functions,” ((P~}~,~. These 
functions are approximate 6 functions on the plane, such that for every function, 
UEL’ITL”, 

cpa*u+u as 6-0, (2.3) 

Here * denotes convolution. We call 6 the “cutoff’ for the function qa. For any 
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function cp with j cp = 1, rpa(Z)=6-*&//6) is a set of cutoff functions. For 
coEL’nL”, and small 6 we have the following approximation: 

O(Z)%cpcp, * w(z)~~yicpb(z-zi) (2.4) 

for some points Zi and constants yi. The first approximation in (2.4) is due to 
relation (2.3), the second approximation is simply a standard Riemann sum 
approximation to the convolution integral. We can chose the parameters Zi and yi 
in various ways. One approach is to allow the points Zi to lie initially on uniform 
grid of mesh size h, and to let yi= h’~(5~); another is to let yi= Se, o, where Bi 
denotes the square centered on Zi of area h*. 

The “vortex blobs” or simply the “blobs” are represented by the vorticity dis- 
tributions oj(Z) = yi’p6(Z- Zi) (here we have suppressed the 6 dependence of 0). We 
say that the center of the ith blob is Z, and that is strength is yi. 

Let G be the fundamental solution to Laplace’s equation and let Gd denote the 
smoothed kernel G * cps. Then we have by (2.1) and (2.4) that the stream function 
tj satisfies the relation 

t,@) = G * o(Z)wc yiG * qa(F - Zi) = c yiG& - Zi). 
i i 

Thus an approximate velocity held is given by 

u(Z)= -lj+ -cyiay aGs (Z- Zi) 
i 

@)=+pigyi-ij). 

i 

(2.5) 

(2.6) 

(2.7) 

We use the equations to update the positions of the vortex blobs. Specifically, we 
suppose that the positions Zi( t) = (xi(t), y,(t)) of the blobs satisfy the first-order 
system of differential equations 

If the cutoff functions have radial symmetry we introduce the functions K(Z) and 
K,(Z) and the associated function fJr) defined by 

K(F) = ( -ay, a,) G(F) = ’ -7(-AX) 2rL 151 
(2.10) 

KG) = ( - ay, a,) G,@) =fa( I.4 ) KG). (2.11) 
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In Table I, we have displayed the functions fb associated with some of the more 
common choices of cutoff functions. Notice that f8 -+ 1 as 6 -+ 0 or as Y + co. 

Using the functions defined above we can also rewrite Eqs. (2.6) and (2.7) in the 
simpler form 

(u(Z), u(Z)) = c yi&(z- 5;). (2.12) 

The convergence of the vortex method for smooth initial data, using specific 
cutoff functions, has been proved. These results state that h, the initial distance 
between the blobs, and the cutoff 6, must satisfy a relation of the form 6 = hY, where 
0 <q < 1. Hald and Del Prete [9] first showed convergence using their cutoffs. 
Hald [7] subsequently improved those estimates. Finally Beale and Majda [4] 
have shown that there exist cutoff functions which can produce arbitrary orders of 
convergence. 

The solution of Eq. (2.2) is performed by the following random walk method. It 
is well known that the probability distribution of the positions of particles undergo- 
ing a Brownian motion satisfies Eq. (2.2), the diffusion equation (see Lamperti 
[lo]). The idea is to use a gaussianly distributed sequence to add a random com- 
ponent to the positions of the vortex blobs at each time step. This will simulate the 
diffusion inherent in Eq. (2.2). 

An exact analysis of the random vortex method is not available. Marchioro and 
Pulvirenti [12] have shown that the random vortex method approximates the 
Navier-Stokes equations in a weak sense, as the initial grid size and cutoff 
approaches 0 in an appropriate way. Their result is impractical for us as we need 
stronger forms of convergence. For instance, we need convergence in an L* or L" 
sense. Hald [S] has analysed a method similar to the random vortex method for a 
problem in chemical dynamics and obtained strong convergence. His results and 
the discussions found in [S, 13, 31 indicate that random vortex method will 
approximate the solution of the Navier-Stokes equation with an error of order 
R -“‘. This is of the same order as the error obtained when Eq. (2.2) is solved by 
using random walks. 

3. THE MODEL PROBLEM 

Our model problem consists of solving Eqs. (1.1 )-( 1.4), together with the non- 
smooth initial condition 

5(Z) = 1 if l5l<i-, 
(3.1) =o if 121 > r. 
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As this is radially symmetric, it follows that Qo = 0 (see Batchelor [ 11). The 
Navier-Stokes equations reduce to two cases, 

o,=o if R=m, (3.2) 

1 
co,=-Adw 

R 
if 0-cR-c~~. (3.3) 

If R = cc, the solution is a rotating blob with angular velocity $, and period of 
rotation T= 471. For 0 < R < 00, w is a solution of the heat equation and can be 
written in the form, 

where 5 is the initial distribution of vorticity and E, is the fundamental solution for 
the heat equation 

(3.5) 

One test of our numerical method is to calculate the exact and numerical values 
of vorticity (or velocity) at many points and use a discrte norm (e.g., L2) to 
measure the error of the method. Another is to compare the positions of the vortex 
blobs at each time step with the positions of corresponding particles evolved by the 
exact flow. However, it is expensive to evaluate the integral (3.4) or to calculate the 
vorticity generated by the vortex blobs at many points. A common practice in these 
situations is to compare the exact and computed values of easily computable 
functionals. Following Milinazzo and Saffman, we chose the functional 

which satisfies 

L(t) = L(0) + 4t/R. 

In the random vortex method L can be approximated by 

A(t)=kT C(Xi(t))2 + (Yi(t))213 
I 

(3.6a) 

(3.6b) 

(3.7) 

where the number of vortex blobs is denoted by N and their centers by (xi(t), y{(t)). 
The derivation of this formula supposes that all of the vortex blobs in our test 
problem have equal strength. 
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We will study the expected value denoted by E, and the variance denoted by rr*, 
of the quantity A. An exact analysis is not available, but we expect that the general 
case should be comparable to pure diffusion. It follows from Section 4 of Milinazzo 
and Saffman [13] that, 

E@(t)) = A(O) + 4t/R (3.8) 

02(A(t))=$4(0)+$ c 1 5-7 
+4(O) for !81. 

The analysis ‘of the error is based on the functional L and its numerical 
approximation A. We considered the relative error in A, 

e(t) = IA(t) - L(t)1 
IL(t)1 . 

(3.10) 

Thus if the error in vorticity is small, then e(t) will be small. The function e(t) can 
be decomposed into two components corresponding to “startup” and “interaction” 
errors. Thus we introduce the functions 

140) - Jw)I e startup = 
IW)l ’ 

(3.11) 

e (t)= IA(t)- C4O)+‘WRII I Mt)l . 
(3.12) 

Note that A(0) + 4t/R is the expected value of A(t). 
In the case of pure diffusion the standard deviation o(el(t)) can be calculated 

from (3.9) and satisfies 

1 8t 1 1 
112 

o(el(t))x- - 
N1”R1’* A(0) 

for R/t&l. 

Milinazzo and Saffman [ 131 measure the error by use of the functional 

eMs(t) = IA(t) - CL(O) + WRII 
4tlR ’ 

(3.13) 

(3.14) 

It is possible to construct examples in which the vorticity field generated by a 
sum of vortex blobs approximates the exact vorticity for the model problem 
arbitrarily well, but for which the function e&t) is of arbitrary size (in particular, 
when R is large or t small). Thus we prefer to estimate the error by estartup and e,. 
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4. NUMERICAL RESULTS 

There are many possible ways to implement the random vortex method. For 
example, we can make the following choices: 

(1) Initial placement and strength of the vortex blobs. 
(2) Form of cutoff function and the appropriate cutoff size for a given num- 

ber of blobs. 
(3) Choice of time integration scheme to solve the system of Eqs. (2.8) and 

(2.9). 
(4) Random number generator to be used for the simulation of the random 

walk. 

Our implementation consisted of the following choices: 
The positions Pi of the blobs were initially given on a uniform grid of mesh size h. 

Let Bi be the square of area h* centered on Zi and parallel to the grid. Then the 
strengths of each blob are given by, yi= jB, w. We call this a uniform grid dis- 
tribution with averaging. 

For the cutoff function we chose Chorin’s (see Table I) with a cutoff 6 = 2h. 
To integrate Eqs. (2.8) and (2.9), we used fourth-order Runge-Kutta as our time 

integration method with a time step of At = 0.05. With this choice, the vortex 
method (without random walk) produced a change in the value of A(t) which was 
less than lo- 15, over a time interval of 3 periods of rotation of exact solution. 
Milinazzo and Saffman [13] chose Heun’s method, whereas Chorin [5] used 
Euler’s method. 

To simulate the random walk we needed a 2-dimensional gaussianly distributed 

0.650 

0.600 

E 

~0.550 

k 
2 m 
6 

0,sod k 

0.450 
0. 

.b 
I, I, I, " / 'I I' 

/' 

I . . . . I ., 
0. 10. 20. 30. 40. 

FIG. 1. (a) Angular moment for 429 blobs evolved by random walk algorithm for R = 1250 together 
with its expected value and standard deviation. (b) Angular moment for 468 blobs evolved by random 
walk algorithm for R = 1250 together with its expected value and standard deviation. 
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sequence of points (cl, iz), with zero mean and standard deviation v. This was 
obtained from a uniformly distributed sequence of points (q,, q2), on 
[0, 11 x [O, 11, by using the formula 

Cl = v cos(27r?j,)( -2 log(~*)p* (4.1) 

(I2 = v sin(2rm,)( -2 1og(y/J)1’2. (4.2) 

Figures la, b and 2a, b display typical results. These figures display the computed 
value of A(t), compared to the expected value of A(t) and its standard deviation as 
given by (3.8) and (3.9) (R= 1250, IV=429 and 468, At = 0.05). Notice that the 
errors demonstrated by the random vortex method, for this relatively small 
Reynolds number, are qualitatively similar to the corresponding results for the ran- 
dom walk algorithm. 

We studied the effect of varying the initial distribution of the vortex blobs and 
the choice of cutoff function. Following Milinazzo and Saffman [13, p. 3841, we 
investigated the effect of distributing the blobs randomly at t = 0. The positions Zi of 
the blobs were generated by using a uniformly distributed sequence of points on 
[0, l] x [0, 11. This type of initial distribution will be called random, and h will 
denote the average distance between the blobs. The strengths of the blobs were 
determined by either: 

(1) yi = Se, o, where Bi denotes the square of area h* centered on Zj; 
(2) yi = O(Zj) h2. 

Figures 3a-d display the errors obtained for the various initial startup procedures 
discussed. Notice the particularly “choppy” behavior of Figs. 3c, d. This can be 
explained by observing that the addition of a blob at position (x, y) will change the 

b 
I"","","". 

,,' 

0. 10. 20. 30. 40. 0. 10. 20. 30. 40 

f me 

FIG. 2. (a) Angular moment for 429 blobs evolved by random vortex method for R = 1250 together 
with its expected value and standard deviation. (b) Angular moment for 468 blobs evolved by random 
vortex method for R = 1250 together with its expected value and standard deviation. 
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FIG. 3. (a) Initial error estanup for uniformily distributed vortex blobs with averaged strength. 
(b) Initial error eSfaRUp for uniformily distributed vortex blobs with unaveraged strength. (c) Initial error 
ertartup for randomly distributed vortex blobs with averaged strength. (d) Initial error eStarfYp for ran- 
domly distributed vortex blobs with unaveraged strength. 

error by an amount of N-‘(x2 + y*), N being the total number of blobs for a par- 
ticular run. Hence the addition of one blob near the boundary of the support of the 
vorticity will produce a change of l/N. 

Comparison of Figs. 3a-d clearly shows the superior accuracy of the uniform grid 
with blob strength given by (l), in approximating the initial angular moment. 
Figures 4aad show the error e(3T) (T is the period of the exact solution for the 
inviscid case) obtained when blobs with the various initial conditions were moved 
by the random walk algorithm (R = 1250). There is a correlation between the errors 
shown in Figs. 3c, d and Figs. 4c, d. This shows that for the methods where the 
blobs have a random distribution at t = 0 the initial error, as measured by estartup, 
dominates the error produced by the random walks. Figures 3b and 4b show that 
the phenomenon is less for a uniform initial distribution. Finally the averaging gives 
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FIG. 4. (a) Error e(3T) for uniformily distributed vortex blobs with averaged strength evolved by 
random walks with R = 1250. (b) Error e(3T) for uniformily distributed vortex blobs with unaveraged 
strength evolved by random balks with R = 1250. (c) Error e(3T) for randomly distributed vortex blobs 
with averaged strength evolved by by random walks with R = 1250. (d) Error e(3T) for randomly dis- 
tributed vortex blobs with unaveraged strength evolved by by random walks with R= 1250. 

the best results. This is expected since the initial data is not smooth. In the remain- 
der of this paper we will use uniform grid and averaging. 

For runs with Reynolds number greater than 20000, it became evident that even 
with the use of a uniform grid and averaging that startup errors were distorting the 
errors produced by the interaction of the two fractional steps of our method (see 
Table II). To eliminate the effect of the startup error we have introduced the 
functional e i . 

We observed that practically any choice of cutoff function and cutoff 6 produced 
similar results. This seems to be due to our method of error measurement. If the 
vortex blobs have a distribution which is radially symmetrical, then the velocity 
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TABLE II 

Comparison of Error Measurements 

Reynolds Number 

Random Vortex Method Random Walk Algorithm 

e(T) e,(T) eMs( T) 47’) edi”) e,,(T) 

8OOQO 0.408 0.310 324. 0.602 0.108 478. 
20000 0.196 0.536 39.1 0.516 0.193 103. 
5000 0.453 1.08 22.5 0.362 0.354 18.0 
1250 1.46 2.00 18.2 0.434 0.634 5.39 

Note. Measurements in %, for runs with 500 blobs and with estartuP = 0.239%. 

given by (2.12), for any cutoff, has no mean radial component. As our modes of 
error measurement only detect changes in radial positions (L depends on distance 
of blobs from origin), we cannot accurately compare different cutoff functions. On 
the other hand, we need a cutoff function if R # 00, since the random walk 
algorithm allows blobs to become arbitrarily close. Hence if no cutoffs were used, 
the interactions would be unstable. We chose Chorin’s cutoff function with 6 = 2h. 

From (3.13), for a fixed number of blobs we expect that the error would be 
O(R-'I'), at least for pure diffusion. Table II tabulates our results as we increased 
Reynolds number from 1250 to 80000. With 500 blobs, note that the errors for the 
random vortex method are larger than those obtained for random walks, but that 
the rates of convergence as R--f co are similar. These results verify the estimates 
established in Section 3 for the random walk simulation. 

How does the number of vortex blobs affect the accuracy. For R = 1250, 

t 

0. 100 200. 300. 400 500. 

number Of blcbs 

FIG. 5. Error e(3T) for uniformity distributed vortex blobs with averaged strength evolved by ran- 
dom walks with R= 1250. 
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30. ""!',",""I "'1"" 

number of blobs 

FIG. 6. Error e(3T) for uniformily distributed vortex blobs with averaged strength evolved by ran- 
dom vortex method with R = 1250. 

Figs. 4a, 5, and 6 and Table III contain the relevant data. First note that a com- 
parison of the plots in Figs. 5 and 6 indicates that the random vortex method and 
the random walk algorithm produce qualitatively similar results. To study the 
behavior of the results as N + co, we calculated the functions of the form cN” which 
best fit the data plotted in the Figs. 4a-d and Fig. 6. In particular, we calculated the 
least square estimator for the data sets log(e) vs. log(N). In addition, we determined 
the function of best lit for the points of local maxima in those figures. These results 
along with the appropriate correlation coefficients are tabulated in Table III. We 
see that Figs. 4a, b, d, and Fig. 6 all demonstrate behavior (a close to -0.5) which 
is consistent with the error being O(N-‘I’), as N --) co. 

TABLE III 

Least Square Estimator 

Data Sets 

Figure a 

4a -0.533 
4b -0.418 
4c - 0.280 
4d -0.572 
6 - 0.563 

All (N, e) (N, e) Local Maxima 

P Corr. Coef. a B Corr. Coef. 

4.09 - 0.667 -0.535 4.59 - 0.905 
3.59 - 0.566 -0.591 5.17 -0.838 
3.06 -0.340 -0.359 4.02 -0.634 
5.19 - 0.745 -0.617 5.85 -0.883 
4.27 -0.741 - 0.474 4.35 -0.818 

Note. log(e) = a log(N) + 8, for data e vs. N contained in Figs. 4a-d and 6. 
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5. CONCLUSION 

We have shown that the choice of initial conditions are important in the random 
vortex method. With our initial vorticity a uniform grid initial distribution of blobs 
with the strength of the blobs obtained by averaging give the best results. The 
dependence on the initial conditions is also found in the vortex method for smooth 
initial data. Here though, the choice of cutoff function is also important (Beale and 
Madja [4] and Perlman [14]). 

The time evolution of the errors obtained for the random vortex method is 
similar to the corresponding result for the random walk algorithm. This is a 
favorable outcome. We could not expect the fractional step algorithm to produce 
less error than its individual parts, but it was conceivable that the errors would be 
much larger. 

Finally, our results indicate that the error e, for the random vortex method is 
U(N-“2R-11/2). Hence, for a fixed number of vortex blobs, the accuracy of the 
method increases as the Reynolds number increases. 
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